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Abstract: In this paper, we mainly considered the Hamilton-connected indices of the Petersen graph and the graphs 
obtained by replacing each vertices of the Petersen graph with an n-cycle. Hamilton-connected index is the minimum 
integer m of the m-time iterated line graph Lm(G) of Petersen graph classes such that Lm(G) is Hamilton-connected.  A 
graph G is Hamilton-connected if any two vertices of G are connected by a Hamilton path. We show that the Hamilton-
connected indices of the Petersen graphs is 1, and the Hamilton-connected indicies of graphs obtained by replacing 
each vertex of the Petersen graph with an n-cycle (3≤n≤6) is 2.
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1. Introduction

In this paper we consider finite undirected simple graphs and follow the notation and terminology of [1].

Let G be a graph with vertex set )(GV  and edge set )(GE  The line graph )(GL  of a graph G is the graph with vertex 
set )(GE , in which two vertices are adjacent, if and only if the corresponding edges have a common end vertex in G. 

For 1≥m , the m-time iterated line graph )(GLm  is defined recursively by GGL =)(0  )()(1 GLGL =  and 

. A graph is Hamilton-connected if for any two vertices )(, GVvu ∈  there exists a (u,v)-path containing all vertices 
of G. The Hamilton- connected index is the smallest integer m such that )(GLm  is Hamilton-connected, denoted by 
hc(G). A path passing through all the vertices of a graph is called a Hamilton path. The path, cycle and complete 

graph with n vertices are denoted nP , nC  and nK , respectively.  Defined }.)(:)({)( ivdGVvGV Gi =∈=  .The diameter of G is 
. we use )(Gκ  and )(' Gκ  to denote the connectivity and the edge-connectivity of  G. 

For an integer  k > 0,  a  graph  G  is  essentially k -edge -connected  if  G  does  not  have  an  essential  edge  cut  X 
with |X| < k. The Petersen Graph is the simple graph whose vertices are the 2-element subsets of a 5-element set and 
whose edges are the pairs of disjoint 2-element subsets. 

A lane in G is a nontrivial whose ends are not in )(2 GV  and whose internal vertices, if any, have degree 2 in G. 
),(dist ji ee  is the length of the shortest path from a certain end point of  to certain end point of je . A poly-vertex is  

one having degree at least 3. A poly-path is a path joining two poly-vertices of G, whose internal vertices, if any, have 
degree 2. A cyclic-poly-path is a path such that the ends of it are poly vertices and all internal vertices are on a cycle 
and of degree 2. An end-vertex is a leaf or one vertex having degree 1. An end-path is one joining a poly-vertex with 
an end-vertex such that whose internal vertices, if any, have degree 2.

A subgraph H of a graph G is dominating, if )(HVG −  is edgeless. Let )(,0 GVvv k ∈ , a ),( 0 kvv -trail of  G is a vertex-
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edge alternating sequence kkveevev 2110 , such that all the ie  are distinct and for each i=1, 2,...,k , ie  joins 1−iv  with 

iv  . With the notation above, the ),( 0 kvv  -trail is also called an ),( 1 kee  -trail, and the vertices 121 ,,, −kvvv   are called 
internal vertices of the trail. When )( 0 kvv =  the ),( 0 kvv -trail is called a ),( 0 kvv  closed trail. A dominating  ),( ki ee  - trail T of 
G is an ),( ki ee  - trail such that every edge of G is incident with an internal vertex of T. A spanning ),( 1 kee  -trail of G is an 

),( 1 kee  -trial such that )()( GVTV =  A dominating  closed trail (abbreviated DCT) of G is a closed trail (or, equivalently, 
an eulerian subgraph) T in G such that every edge of G has at least one vertex on T. There is a close relationship 
between dominating closed trails in graph G and Hamilton cycles in L(G), as follows:

Theorem 1.  [2] Let G be a graph with |E(G)| ≥ 3.Then L(G) is hamiltonian if and only if G has a dominating closed 
trail.

In 1983, Clark and Wormald in [3] generalized the definition regarding Hamiltonian indices and introduced the 
notion of Hamilton-connected index. In 2009, Chen et.al. in [4] studied the Hamilton-connected index problem and 
obtained a necessary and suffcient condition, stated as follows:

Theorem 2.  [4] Let G be a graph with |E(G)| ≥ 3.Then L(G) is Hamilton-connected if and only if for any pair of edges 
e1 , e2 ∈ E(G),  G has a dominating (e1 , e2 )-trail.  

It is obviously that the following result:

Corollary 3. If G is Hamilton-connected, then L(G) is also Hamilton-connected.

In [4], Chen, et.al. established certain relationships between the Hamilton-connected index and both the minimum 
and maximum degrees of a graph.  Additionally, they presented some relations between the Hamilton-connected 
index and the connectivity and diameter of G, and results as follows:

Theorem 4. [4] Let G be a connected graph with minimum degree at least 3. Then hc (G) ≤ 3.

Theorem 5. [4] Let G  be a graph which is neither a path nor a cycle. Then , where 

.

Theorem 6. [4] Let G be a connected graph that is neither a path nor cycle.  If the length of a longest lane is k with 
k ≥ diam (G)+1, then hc (G)=k-1.

In 2014, Sabir Eminjan and Vumar Elkin in [5] introduced the relations between the Hamilton-connected index and 
the Hamiltonian index of trees. After that, they determined the upper and lower bounds of the Hamilton-connected 
index of unicyclic graphs. They also presented the trees and unicyclic graphs G with the property that hc(G)=h(G)+1, 
the results as follows:

Theorem 7. [5] If T is a tree with |V (T)| ≥ 5 which is not a path, then h(T) ≤ hc(T) ≤ h(T)+1, where h(T)=max{{l(P)+1}, 
{l(Q)}} over all poly-path P and end-paths Q of T, and l(.) is the length of a path.

Theorem 8.  [5] Let G be a unicyclic graph with |V (G)| ≥ 4 that is not a cycle. Then, k ≤ hc (G) ≤ max{k + 1, k, + 1}, 
where k = max{{l(P) + 1}, {l(Q)}} overall poly-paths P and end-paths Q of G, l(.) is length of a path, and k, is the  length 
of a longest cyclic-poly-path in G.

Theorem 9.  [5] If G is a connected graph containing cyclic and acyclic blocks such that each cyclic block is 
hamiltonian, then k ≤ hc (G) ≤ max{k+1, k,+1}, where k= max{{l(P)+1}, {l(Q)}} over all poly-paths P and end-paths Q of G, 
l(.) is length of a path, and k, is the length of a longest cyclic-poly-path in G.

As we well know, the determination of a Hamilton-connected graph is an NP-hard problem, there are few results 
regarding the Hamilton-connected index of graph, we looked up some results between Hamilton-connected graph 
and the line graph, as follows: 

Theorem 10.  [6] If G is a 4-edge-connected graph, then the line graph L(G) is Hamilton-connected.

Theorem 11.  [7] Every 7-connected line graph is Hamilton-connected.

Theorem 12.  [8] (I) Every 4-connected line graph of a claw free graph is Hamilton-connected.
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(II) Every 4-connected hourglass free line graph is Hamilton-connected.

Theorem 13.  [8] Let G be a graph such that L(G) is 4-connected and every vertex of degree 3 in a triangle of G, 
then L(G) is Hamilton-connected.

Theorem 14.  [9] Every 3-connected, essentially 11-connected line graph is Hamilton- connected.

In 2023, Lv and Zhao in [10] provided some results on the Hamiltonian indices of three classes of graphs obtained 
from Petersen graph, one of results as follows:

Theorem 15  [10] (I) Let G be a Petersen graph, then h (G)=1.

(II) Let G be the graph obtained by replacing every vertex of Petersen graph with a n-cycle, then h (G)=2.

(III) Let G be the graph obtained by adding n pendant edges to each vertex of Petersen graph, then h(G)=2.

2. Our Main Results

Motivated by these studies, we consider the Hamilton-connected indices of the Petersen graph and the graphs 
obtained by replacing each vertices of the Petersen graph with an n-cycle, and obtain the following results: 

Theorem 16.  Let G be a Petersen graph, then hc (G)=1.

Theorem 17.  Let G be the graph obtained by replacing every vertex of Petersen graph with a n-cycle (3≤n≤6), 
then hc (G)=2.

Theorem 18.  Let G be the graph obtained by replacing every vertex of Petersen graph with a n-cycle(n ≥ 7), then 
hc (G)≥2.

3. Proof of Main Results

Proof of theorem 16 First of all, the Petersen graph G is a 3-connected graph. According to Theorem 5, we 
can obtain 0 ≤ hc (G) ≤ 2. As we all know, the Petersen graph is not a Hamilton-connected graph, then hc (G) ≠ 

0, theorefore 1 ≤ hc (G) ≤ 2.  Next, we prove hc(G)=1by Theorem 2, we need to find a dominating ),( ji ee  -trail for 
any pair of edges in the Petersen graph.  Since the diameter of the Petersen graph is 2, we can be certain that the 

dominating ),( ji ee -trail has 3 cases in G, as follows:

For convenience, we mark the vertices and edges of Petersen graph as figure 1, Let )4,3,2,1,0(, =nvu nn  be 
respectively vertices of outer cycle 5C  and inner cycle 5C , )4,3,2,1,0(,,e ' =nfe nnn  be respectively edges of outer cycle 5C  
and inner cycle 5C  and the edges connecting the outer cycle 5C  and the inner cycle 5C . 

Figure 1:  Petersen Graph
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Case 1.  When 0),(dist =ji ee  , it means we have found two adjacent edges in the G, Since the Petersen graph is a 
Symmetric figure, some isomorphic structures will not be elaborated further in this part of the text.

Subcase 1.1 ie and je  are the edges of outer 5C  of the Petersen graph, there exist two situations where two 
sides with a distance of 0 which are adjacent to each other.  There are 5 pairs of adjacent ),( ji ee edges, which can be 
separated into two types: ),( 04 ee  and   For any ),( ji ee , we can find a dominating ),( ji ee trail in figure 

1. Taking ),( 10 ee for instance, we provide one of the edge-trail sequence as follows: 1111
'

13
'

30
'

02222334400 eufvevevevfueueueue . 
Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 1.2 ie and je  are also two situations among the adjacent edges between the outer 5C of the Petersen 
graph and the internal edges of the connected 5C . There are 10 different adjacent ),( ji ee edge pairs, which can be 
separated into three types: ),( nn fe , , and ),( 04 fe For any ),( ji ee , we can find a dominating ),( ji ee  -trail 
in figure 1. Taking ),( 00 fe for instance, we provide one of the edge-trail sequences: 00

'
33

'
11

'
44443322110 fvevevevfueueueue  Similarly, 

we 5C  can determine such dominating edge trail sequences for the remaining edge pairs. 

Subcase 1.3 ie  is the edge connecting the outer  and the inner 5C ,and je  is the edge on the inner 5C  of the 
Petersen graph. There are 10 different adjacent ),( ji ee  edge pairs, which can be separated into three types: ),( '

nn ef

,  and For any ),( ji ee , we can find a dominating ),( ji ee -trail in figure 1. Taking ),( '
00 ef  

as an example, we provide one of the edge-trail sequence: '
02

'
24

'
41

'
13332211000 evevevevfueueueuf  Similarly, we can determine 

such dominating edge trail sequences for the remaining edge pairs.

Subcase 1.4  Both ie  and je  are edges on the inner 5C  of the Petersen graph. There are 5 different adjacent 
),( ji ee  edge pairs, which can be separated into three types:  , .  For any ),( ji ee , we can find 

a dominating ),( ji ee -trail in figure 1. Taking ),( '
3

'
0 ee as an example, we only provide one of the edge-trail sequences: 

'
300001122333

'
11

'
44

'
22

' evfueueueufveveveve 
0 . Similarly, we can determine such dominating edge trail sequences for the 

remaining edge pairs.

Case 2. 1),(dist =ji ee in the Petersen graph.

Subcase 2.1 ie and je  are  non-adjacent edges on the outer 5C  of the Petersen graph with distance of 1. There 
are 5 different adjacent ),( ji ee  edge pairs, which can be separated into two types: and  . 
For any ),( ji ee , we can find a dominating ),( ji ee -trail in figure 1. Taking ),( 20 ee  as an example, we list the dominating 
edge trail sequence: .eueufvevevevevfue 23344422003311110

’‘’‘  Similarly, we can determine such dominating edge trail sequences 
for the remaining edge pairs.

Subcase 2.2  ie  is the edge on the outer 5C  of the Petersen graph, and je  is the edge on the inner 5C . Except for 
five edge pairs: ,  ,  there are 20 different  edge pairs with distance of 1, For any 

),( ji ee  , we can find a dominating ),( ji ee -trail in figure 1. Taking  as an example, we list the dominating edge 
trail sequence: . Similarly, we can determine such dominating edge trail sequences for 
the remaining edge pairs.

Subcase 2.3 ie  is the edge on the outer 5C  of the Petersen graph, and je  is the edge connecting the outer 

5C  and the inner 5C . There are 10 different ),( ji ee  edge pairs with distance of 1, which can be separated into four 
types: , , , and  . For any ),( ji ee  we can find a dominating ),( ji ee -trail 
in figure 1. Taking  as an example, we list the dominating edge trail sequence: 22233444

'
41

'
13

'
30000 fueueufvevevevfue . 

Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 2.4  Both ie  and je  are edges connecting the outer 5C  and the inner 5C  in the Petersen graph. There 
are 5 different ),( ji ee edge pairs with distance of 1, which can be separated into four types: 
,  , ,  . For any ),( ji ee  , we can find a dominating ),( ji ee -trail in figure 1. 
Taking  as an example, we list the dominating edge trail sequence:  . Similarly, we can 
determine such dominating edge trail sequences for the remaining edge pairs.
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Subcase 2.5  ie  is the edge connecting the outer 5C  and the inner 5C  in the Petersen graph, and je  is the 
edge on the inner 5C . There are 10 different ),( ji ee  edge pairs with distance of 1, which can be separated 
into four types:  , ,  , and  . For any ),( ji ee , we can 
find a dominating ),( ji ee -trail in figure 1. Taking  as an example, we list the dominating edge trail 
sequence: . Similarly, we can determine such dominating edge trail sequences for the 
remaining edge pairs.

Subcase 2.6  Both ie  and je  are edges on the inner 5C  of the Petersen graph. There are 5 different ),( ji ee  edge 
pairs with distance of 1, which can be separated into two types:  , and  . For any ),( ji ee  , 
we can find a dominating ),( ji ee -trail in figure 1. Taking  as an example, we list the dominating edge trail 
sequence:  . Similarly, we can determine such dominating edge trail sequences for the 
remaining edge pairs.

Case 3.  in G, Since the diam(G) = 2 of the Petersen graph, so we can only provide 2 different cases 
in this condition.

Subcase 3.1  ie  is the edge on the outer 5C  of the Petersen graph, and je  is the edge on the inner 5C . There are 
only 5 different ),( ji ee  edge pairs with distance of  2, which can be separated into two types:  and 

. For any ),( ji ee , we can find  a dominating ),( ji ee -trail in figure 1. Taking  as an example, the 

dominating edge trail sequence is:  . Similarly, we can determine such dominating edge 
trail sequences for the remaining edge pairs.

Subcase 3.2 ie  is the edge on the outer 5C  of the Petersen graph, and je  is the edge connecting the outer 5C  and 
the inner 5C . There are only 5 different ),( ji ee  edge pairs with distance of  2, which can be separated into two types:  

 and  . For any ),( ji ee , we can find a dominating ),( ji ee -trail in figure 1. Taking 
 as an example, the dominating edge trail sequence is:  . Similarly, we can 

determine such dominating edge trail sequences for the remaining edge pairs.

According to theorem 2, we can sure that L(G) of Petersen graph is Hamilton-connected, that is hc (G)=1.

Lemma 19 [1]  Whitney Theorem: There exists a relationship between )(Gκ  and ))(( GLκ  of G: 2)(2))(( −≥ GGL κκ .

Since multiedges are not permitted to appear in this passage, we didn’t consider the graph obtained by replacing 

every vertex of Petersen graph with a 2-cycle. Since 5C  contains 3C , and 3C  is also  , the graphs obtained by 
replacing each vertices of the Petersen graph with n-cycle (3 ≤ n ≤ 6) can be discussed in two cases:

Proof of Theorem 17.  Let G be the graph which is obtained by replacing each vertex of the Petersen graph 

with a 3-cycle. It can be known that 3)( =Gκ  . According to theorem 5, let  for 
this newly constructed graph. When m=0, we have , which satisfied the conditions of this theorem. 
Consequently, we can obtain that 0 ≤ hc(G) ≤ 2 for graph G. Then, by Theorem 15(II), the Hamiltonian indices h(G)=2. 
Combining this with the previous result, we can further get 2 ≤ hc (G) ≤ 2, that is, hc (G)=2(see figure 2).

Figure 2:  the graph obtained by replacing every vertex with a 3-cycle of Petersen graph
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Case 2  Let G be the graph which is obtained by replacing each vertex of the Petersen graph with a n-cycle (4 ≤ n 

≤ 6), it is obviously that 2)( =Gκ . We can observe that 3))(( =GLκ  . According to theorem 5, we have 1)(3 =Gκ , then 1 ≤ 
hc (G) ≤ 3. The Hamiltonian indices h(G) = 2 by theorem 15(II). Therefore, we can further conclude that 2 ≤ hc (G) ≤ 3. 

Let )(' GLG = , since any three edges incident to a degree-3 vertex in G form a claw structure 3,1K , thus every degree-3 
vertex in 'G  lies on a triangle, and 3)( ' =Gκ . According to Lemma 19, , i.e., 4))(( ' ≥GLκ . By theorem 
13,  is Hamilton-connected. Hence, hc(G) = 2.

Proof of Theorem 18.  Let G be the graph which is obtained by replacing each vertex of the Petersen graph 
with an n-cycle (n ≥ 7), by theorem 15(II), the Hamiltonian indices h(G) = 2 for this graph. Therefore, we can further 
conclude that  hc (G) ≥ 2 .

4. Concluding Remarks

Determining the Hamilton-connected index hc(G) of a graph is NP-hard, there are few results on it. In this paper, 
we determine that the Hamilton-connected indices of the Petersen graph is 1, and the Hamilton-connected indices 
of graphs obtained by replacing each vertex of the Petersen graph with an n-cycle (3 ≤ n ≤ 6)  is 2. When n ≥ 7, there 
is no effective method to determine the Hamilton-connected index, and thus this problem remains a topic for future 
research.
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