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Abstract: In this paper, we mainly considered the Hamilton-connected indices of the Petersen graph and the graphs
obtained by replacing each vertices of the Petersen graph with an n-cycle. Hamilton-connected index is the minimum
integer m of the m-time iterated line graph L"(G) of Petersen graph classes such that L"(G) is Hamilton-connected. A
graph G is Hamilton-connected if any two vertices of G are connected by a Hamilton path. We show that the Hamilton-
connected indices of the Petersen graphs is 1, and the Hamilton-connected indicies of graphs obtained by replacing
each vertex of the Petersen graph with an n-cycle (3<n<6) is 2.
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1. Introduction

In this paper we consider finite undirected simple graphs and follow the notation and terminology of'".

Let G be a graph with vertex set V(G) and edge set £(G) The line graph L(G) of a graph G is the graph with vertex
set £(G), in which two vertices are adjacent, if and only if the corresponding edges have a common end vertex in G.
For m>1, the m-time iterated line graph "(G) is defined recursively by L'(G)=G L'(G)=L(G) and L{Z"(G) =L{L"(G)
. A graph is Hamilton-connected if for any two vertices u,v €V (G) there exists a (u,v)-path containing all vertices
of G. The Hamilton- connected index is the smallest integer m such that L"(G) is Hamilton-connected, denoted by
hc(G). A path passing through all the vertices of a graph is called a Hamilton path. The path, cycle and complete
graph with n vertices are denoted P, ¢, and «k,, respectively. Defined 7.(G)={ve¥(G):d;() =i} .The diameter of G is
diam(G)=max =y, {max{d(vw)|wEV(@)}} . we use k(G) and «(G) to denote the connectivity and the edge-connectivity of G.
For an integer k>0, a graph G is essentially k -edge -connected if G does not have an essential edge cut X
with |X| < k. The Petersen Graph is the simple graph whose vertices are the 2-element subsets of a 5-element set and
whose edges are the pairs of disjoint 2-element subsets.

A lane in G is a nontrivial whose ends are not in %.(@ and whose internal vertices, if any, have degree 2 in G.
dist(e,¢,) s the length of the shortest path from a certain end point of to certain end point of ¢,. A poly-vertex is
one having degree at least 3. A poly-path is a path joining two poly-vertices of G, whose internal vertices, if any, have
degree 2. A cyclic-poly-path is a path such that the ends of it are poly vertices and all internal vertices are on a cycle
and of degree 2. An end-vertex is a leaf or one vertex having degree 1. An end-path is one joining a poly-vertex with
an end-vertex such that whose internal vertices, if any, have degree 2.

A subgraph H of a graph G is dominating, if G-V (H) is edgeless. Let w.v €V(G) ,a (w,v) -trail of Gis a vertex-
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edge alternating sequence veve,...¢,v,, such that all the e, are distinct and for each i=1, 2,...k, e, joins v, with
V; . With the notation above, the (v,.,v,) -trail is also called an (e, ¢,) -trail, and the vertices v,,v,,...,v,, are called
internal vertices of the trail. When (,=v,) the (v,v)-trail is called a (v,v) closed trail. A dominating (e.e,) - trail T of
G is an (e.e,) - trail such that every edge of G is incident with an internal vertex of T. A spanning (e..e,) -trail of G is an
(ei,ep) -trial such that »(1)=r(G) A dominating closed trail (abbreviated DCT) of G is a closed trail (or, equivalently,
an eulerian subgraph) T in G such that every edge of G has at least one vertex on T. There is a close relationship
between dominating closed trails in graph G and Hamilton cycles in L(G), as follows:

Theorem 1. @ LetGbe a graph with |E(G)| = 3.Then L(G) is hamiltonian if and only if G has a dominating closed
trail.

In 1983, Clark and Wormald in ' generalized the definition regarding Hamiltonian indices and introduced the
notion of Hamilton-connected index. In 2009, Chen et.al. in " studied the Hamilton-connected index problem and
obtained a necessary and suffcient condition, stated as follows:

Theorem 2. “ Let Gbe a graph with |E(G)| = 3.Then L(G) is Hamilton-connected if and only if for any pair of edges
e;, e, € E(G), Ghasadominating (e,, e, )-trail.

It is obviously that the following result:
Corollary 3. If G is Hamilton-connected, then L(G) is also Hamilton-connected.

In™, Chen, et.al. established certain relationships between the Hamilton-connected index and both the minimum
and maximum degrees of a graph. Additionally, they presented some relations between the Hamilton-connected
index and the connectivity and diameter of G, and results as follows:

Theorem 4. " Let G be a connected graph with minimum degree at least 3. Then hc (G) < 3.

Theorem 5. “ Let G be a graph which is neither a path nor a cycle. Then <@ <G <x'(G)+2, where
«*(G) =min{m | L" (G) is 3 — connected}

Theorem 6. Let G be a connected graph that is neither a path nor cycle. If the length of a longest lane is k with
k = diam (G)+1, then hc (G)=k-1.

In 2014, Sabir Eminjan and Vumar Elkin in ®lintroduced the relations between the Hamilton-connected index and
the Hamiltonian index of trees. After that, they determined the upper and lower bounds of the Hamilton-connected
index of unicyclic graphs. They also presented the trees and unicyclic graphs G with the property that hc(G)=h(G)+1,
the results as follows:

Theorem 7. If Tis a tree with |V (T)| = 5 which is not a path, then h(T) < hc(T) < h(T)+1, where h(T)=max{{/(P)+1},
{/(Q)}} over all poly-path P and end-paths Q of T, and /(.) is the length of a path.

Theorem 8. * Let G be a unicyclic graph with |V (G)| > 4 that is not a cycle. Then, k < hc (G) < maxtk + 1, k + 1},
where k = max{{/(P) + 1}, {{(Q)}} overall poly-paths P and end-paths Q of G, /() is length of a path, and k is the length
of a longest cyclic-poly-path in G.

Theorem 9. ™ If G is a connected graph containing cyclic and acyclic blocks such that each cyclic block is
hamiltonian, then k < hc (G) < max{k+1, k+1}, where k= max{{/(P)+1}, {/(Q)}} over all poly-paths P and end-paths Q of G,
I() is length of a path, and k, is the length of a longest cyclic-poly-path in G.

As we well know, the determination of a Hamilton-connected graph is an NP-hard problem, there are few results
regarding the Hamilton-connected index of graph, we looked up some results between Hamilton-connected graph
and the line graph, as follows:

Theorem 10. ' If G is a 4-edge-connected graph, then the line graph L(G) is Hamilton-connected.
Theorem 11. ” Every 7-connected line graph is Hamilton-connected.

Theorem 12. ¥ (1) Every 4-connected line graph of a claw free graph is Hamilton-connected.
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(I) Every 4-connected hourglass free line graph is Hamilton-connected.

Theorem 13. ® Let G be a graph such that L(G) is 4-connected and every vertex of degree 3 in a triangle of G,
then L(G) is Hamilton-connected.

Theorem 14. " Every 3-connected, essentially 11-connected line graph is Hamilton- connected.

In 2023, Lv and Zhao in """ provided some results on the Hamiltonian indices of three classes of graphs obtained
from Petersen graph, one of results as follows:

Theorem 15 "% (I) Let G be a Petersen graph, then h (G)=1.
(I) Let G be the graph obtained by replacing every vertex of Petersen graph with a n-cycle, then h (G)=2.
(1) Let G be the graph obtained by adding n pendant edges to each vertex of Petersen graph, then h(G)=2.

2. Our Main Results

Motivated by these studies, we consider the Hamilton-connected indices of the Petersen graph and the graphs
obtained by replacing each vertices of the Petersen graph with an n-cycle, and obtain the following results:

Theorem 16. Let G be a Petersen graph, then hc (G)=1.

Theorem 17. Let G be the graph obtained by replacing every vertex of Petersen graph with a n-cycle (3<n<6),
then hc (G)=2.

Theorem 18. Let G be the graph obtained by replacing every vertex of Petersen graph with a n-cycle(n > 7), then
hc (G)=2.

3. Proof of Main Results

Proof of theorem 16 First of all, the Petersen graph G is a 3-connected graph. According to Theorem 5, we
can obtain 0 < hc (G) < 2. As we all know, the Petersen graph is not a Hamilton-connected graph, then hc (G) #
0, theorefore 1 < hc (G) < 2. Next, we prove hc(G)=1by Theorem 2, we need to find a dominating (¢;,e;) -trail for
any pair of edges in the Petersen graph. Since the diameter of the Petersen graph is 2, we can be certain that the
dominating (e;,¢;) -trail has 3 cases in G, as follows:

For convenience, we mark the vertices and edges of Petersen graph as figure 1, Let u,,v,(n=0,1,2,3,4) be
respectively vertices of outer cycle C; and inner cycle C;, ¢,.¢,./,(2=0,1,2,3,4) be respectively edges of outer cycle C;
and inner cycle C; and the edges connecting the outer cycle C; and the inner cycle C;.

Figure 1: Petersen Graph
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Case 1. When dist (e;,e;) =0 , it means we have found two adjacent edges in the G, Since the Petersen graph is a
Symmetric figure, some isomorphic structures will not be elaborated further in this part of the text.

Subcase 1.1 ¢and ¢ are the edges of outer C; of the Petersen graph, there exist two situations where two
sides with a distance of 0 which are adjacent to each other. There are 5 pairs of adjacent (¢;.¢;) edges, which can be
separated into two types: (e.¢) and (€,.¢,,)n=0,1,2,3) Forany (¢.¢;), we can find a dominating (ee;) trail in figure
1.Taking (e,.¢) for instance, we provide one of the edge-trail sequence as follows: € u,¢,u 66U, £v,¢,v,6;v,¢ v, fiuje,
Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 1.2 ¢ and ¢ are also two situations among the adjacent edges between the outer C:of the Petersen
graph and the internal edges of the connected C;. There are 10 different adjacent (e;.¢;) edge pairs, which can be
separated into three types: (¢,./,) , (.. f,.)m=0123),and (e./) Forany (¢.e;), we can find a dominating (¢;,¢;) -trail
in figure 1. Taking (. %) for instance, we provide one of the edge-trail sequences: euemeuen, fivepevsev,f, Similarly,
we C; can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 1.3 ¢ is the edge connecting the outer and the inner Cs,and ¢ is the edge on the inner Cs of the
Petersen graph. There are 10 different adjacent (e.¢;) edge pairs, which can be separated into three types: (/,.c,)
, (e,)n=01) and (f,,e,_,)(n = 2,3,4) For any (¢,¢,), we can find a dominating (e;.¢,) -trail in figure 1. Taking (/i)
as an example, we provide one of the edge-trail sequence: fyuemees fiveveyv,ev,e, Similarly, we can determine
such dominating edge trail sequences for the remaining edge pairs.

Subcase 1.4 Both ¢ and ¢ are edges on the inner C; of the Petersen graph. There are 5 different adjacent
(e.¢;) edge pairs, which can be separated into three types: (c,.c,..)n=0) , (,.¢,.)n-234. Forany (¢.e;), we can find
a dominating (e;,¢;) -trail in figure 1. Taking (¢,.¢)) as an example, we only provide one of the edge-trail sequences:

e v,e,v,e,ve vihuse,u e ue,u,h,v,e; . Similarly, we can determine such dominating edge trail sequences for the
remaining edge pairs.

Case 2. dist(¢,¢;) =1 in the Petersen graph.

Subcase 2.1 ¢ and ¢ are non-adjacent edges on the outer C; of the Petersen graph with distance of 1. There
are 5 different adjacent (¢;,¢;) edge pairs, which can be separated into two types: (¢,.¢,.,)(7=0,1,2)and (e,.¢,;)(n=34) ,
For any (€;¢;), we can find a dominating (e..¢,) -trail in figure 1. Taking (e.¢,) as an example, we list the dominating
edge trail sequence: eufvevievev.ev,fu,eue. Similarly, we can determine such dominating edge trail sequences
for the remaining edge pairs.

Subcase 2.2 ¢ is the edge on the outer C; of the Petersen graph, and ¢ is the edge on the inner Cs. Except for
five edge pairs: (e,,¢,..)(n=0,1,2),(e,.¢,.)n=34) , there are 20 different (¢.e¢;) edge pairs with distance of 1, For any
(e.e;) , we can find a dominating (e..¢,) -trail in figure 1. Taking (e,,¢;) as an example, we list the dominating edge
trail sequence: euewtv.e;ve;vifuseu,fivie,. . Similarly, we can determine such dominating edge trail sequences for
the remaining edge pairs.

Subcase 2.3 ¢ is the edge on the outer C: of the Petersen graph, and ¢ is the edge connecting the outer
C; and the inner C;. There are 10 different (¢,.¢;) edge pairs with distance of 1, which can be separated into four
types:(e,. £, )(n=1,2,3,4),(e,. f,,)n = 0,1,2), (e, £, ,)n = 3,4, and (,, ) . For any (€.,€;) we can find a dominating (¢;,¢;) -trail
in figure 1. Taking (€, /2) as an example, we list the dominating edge trail sequence: eu)f,v,e;vievie,v,fu,e;ue,uf; |
Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 2.4 Both e and ¢ are edges connecting the outer C; and the inner C; in the Petersen graph. There
are 5 different (¢.¢;) edge pairs with distance of 1, which can be separated into four types: (f,, f,.»)(n = 0,1,2)
S(fs fu)n = 3.8 (f,), f))(m = 0,1,2,3),(/o, f2) . For any(e;.e;) , we can find a dominating (¢;.¢;) -trail in figure 1.
Taking (/o /2) as an example, we list the dominating edge trail sequence: fyu,e,u,emeu;fivsesvoesvsev, f; . Similarly, we can
determine such dominating edge trail sequences for the remaining edge pairs.
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Subcase 2.5 ¢ is the edge connecting the outer C; and the inner C; in the Petersen graph, and ¢ is the
edge on the inner C;. There are 10 different (e.¢;) edge pairs with distance of 1, which can be separated
into four types: (fi,€,2)(7 = 0,1,2) (/0,0 = 0,1,2,3) , (f,.e,.3)(n =3,4) , and (f;.€) . For any (¢.¢)), we can
find a dominating (e.¢;) -trail in figure 1. Taking (fy,e,) as an example, we list the dominating edge trail
seqUENCe: Jype i, fv,eves e, [v,¢5. Similarly, we can determine such dominating edge trail sequences for the
remaining edge pairs.

Subcase 2.6 Both ¢ and ¢ are edges on the inner C; of the Petersen graph. There are 5 different (¢;.¢;) edge
pairs with distance of 1, which can be separated into two types: (e, ¢,.)(7 = 0,1,2,3) , and (e, e;) . For any (e.¢;) ,
we can find a dominating (e.¢;) -trail in figure 1. Taking (ey,e;) as an example, we list the dominating edge trail
sequence: eV, faueu epuge uesus f3vsevie, . Similarly, we can determine such dominating edge trail sequences for the
remaining edge pairs.

Case 3. dist(e;,¢;) = 2 in G, Since the diam(G) = 2 of the Petersen graph, so we can only provide 2 different cases
in this condition.

Subcase 3.1 ¢ is the edge on the outer C; of the Petersen graph, and ¢; is the edge on the inner C;. There are
only 5 different (¢;,¢;) edge pairs with distance of 2, which can be separated into two types: (e, ¢,.2) = 0,1,2) and
(ene,5)n = 3,4). For any (¢.¢,), we can find a dominating (e;,¢;) -trail in figure 1. Taking (e).¢,) as an example, the

dominating edge trail sequence is:eu, fyvoesv; fuseumeu, fvev,e, . Similarly, we can determine such dominating edge
trail sequences for the remaining edge pairs.

Subcase 3.2 ¢ is the edge on the outer C; of the Petersen graph, and ¢ is the edge connecting the outer C; and
the inner Cs. There are only 5 different (e.¢;) edge pairs with distance of 2, which can be separated into two types:
(€,: f,4:3)n = 0,1) and (e, /,2)m = 2.3.4) _For any (e.¢,), we can find a dominating (¢;¢;) -trail in figure 1. Taking

(ey, f3) as an example, the dominating edge trail sequence is: ey, foeov, fotep five,v, funesus f5 . Similarly, we can
determine such dominating edge trail sequences for the remaining edge pairs.

According to theorem 2, we can sure that L(G) of Petersen graph is Hamilton-connected, that is hc (G)=1.

Lemma 19" Whitney Theorem: There exists a relationship between x(G) and &(L(G) of G: x(L(G) 22x(G)-2,

Since multiedges are not permitted to appear in this passage, we didn’t consider the graph obtained by replacing
every vertex of Petersen graph with a 2-cycle. Since ¢, contains C;, and C; is alsoX; , the graphs obtained by
replacing each vertices of the Petersen graph with n-cycle (3 < n < 6) can be discussed in two cases:

Proof of Theorem 17. Let G be the graph which is obtained by replacing each vertex of the Petersen graph
with a 3-cycle. It can be known that «(G)=3 . According to theorem 5, let «*(G) = min{m | L"(G) is 3 — connecied} for
this newly constructed graph. When m=0, we have «*(G) = m = 0, which satisfied the conditions of this theorem.
Consequently, we can obtain that 0 < hc(G) < 2 for graph G. Then, by Theorem 15(ll), the Hamiltonian indices h(G)=2.
Combining this with the previous result, we can further get 2 < hc (G) < 2, that is, hc (G)=2(see figure 2).

Figure 2: the graph obtained by replacing every vertex with a 3-cycle of Petersen graph
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Case 2 Let G be the graph which is obtained by replacing each vertex of the Petersen graph with a n-cycle (4 <n
< 6), it is obviously that x(G) =2 . We can observe that «(L(G) =3 . According to theorem 5, we have «°(G)=1, then 1 <
hc (G) < 3. The Hamiltonian indices h(G) = 2 by theorem 15(ll). Therefore, we can further conclude that 2 < hc (G) < 3.
Let G'=L(G), since any three edges incident to a degree-3 vertex in G form a claw structure Xis, thus every degree-3
vertex in G’ lies on a triangle, and «(G)=3. According to Lemma 19, «(L(G)) = 2x(G') - 2, i.e., x(L(G) 24 . By theorem
13, LI*(G) = L(G') is Hamilton-connected. Hence, hc(G) = 2.

Proof of Theorem 18. Let G be the graph which is obtained by replacing each vertex of the Petersen graph
with an n-cycle (n = 7), by theorem 15(ll), the Hamiltonian indices h(G) = 2 for this graph. Therefore, we can further
conclude that hc(G) = 2.

4. Concluding Remarks

Determining the Hamilton-connected index hc(G) of a graph is NP-hard, there are few results on it. In this paper,
we determine that the Hamilton-connected indices of the Petersen graph is 1, and the Hamilton-connected indices
of graphs obtained by replacing each vertex of the Petersen graph with an n-cycle (3 < n < 6) is 2. When n > 7, there
is no effective method to determine the Hamilton-connected index, and thus this problem remains a topic for future
research.

Acknowledgement. This work was supported by 2023 school level project of Qinghai Minzu University
(N0.07M2023005).

References

1] Bondy, J.A.; Murty U.S.R. Graph theory with applications. Macmillan, London and Elsevier, New York, 1976.

2] Harary, F.; Nash-Williams, C.St.J.A. On eulerian and hamiltonian graphs and line graphs. Canad. Math. Bull 1965, 8, 701-709.

3] Chark, L.H.; Wormald, N.C. Hamiltonian-like indices of graphs. ARS Combinatoria 1983, 15, 131-148.

4] Chen, Z.H,; Lai, H.J; Xiong, L.M.; Yan, H.Y.; Zhan, M.Q. Hamilton-connected indices of graphs. Discrete Math 2009, 309, 4819-
4827.

[5] Sabir E, Vumar E. Spanning connectivity of the power of a graph and Hamilton- connected index of a graph. Graphs and
Combinatorics, 2014,30,1551-1563.

[6] Zhan S M. Hamiltonian connectedness of line graphs. Ars Combinatoria, 1986,22: 89-95.

[71 S.Zhan, On Hamiltonian line graphs and connectivity. Discrete Math, 1991,158,89-95.

[8] Kriesell M. All 4-connected line graphs of claw free graphs are Hamiltonian con- nected. Journal of Combinatorial Theory,
Series B, 2001, 82(2): 306-315.

[9] Yang W, Lai H, Li H, et al. Collapsible graphs and Hamiltonian connectedness of line graphs. Discrete Applied Mathematics,
2012, 160(12): 1837-1844.

[10]Lv S, Zhao L. Hamiltonian Indices of Three Classes of Graphs Obtained from Petersen Graph. Axioms,2023,12(6).

[
[
[
[

10



