Hamilton-connected Indices of a Class of Graphs Obtained from the Petersen Graphs

An,Ziyu Lv,Shengmei

Qinghai Minzu University, Xining, Qinghai, 810000, China

Abstract: In this paper, we mainly considered the Hamilton-connected indices of the Petersen graph and the graphs obtained by replacing each vertices of the Petersen graph with an *n*-cycle. Hamilton-connected index is the minimum integer *m* of the *m*-time iterated line graph $L^m(G)$ of Petersen graph classes such that $L^m(G)$ is Hamilton-connected. A graph *G* is Hamilton-connected if any two vertices of *G* are connected by a Hamilton path. We show that the Hamilton-connected indices of the Petersen graphs is 1, and the Hamilton-connected indices of graphs obtained by replacing each vertex of the Petersen graph with an *n*-cycle ($3 \le n \le 6$) is 2.

Keywords: Petersen graph; Iterated line graph; Hamilton-connected index

DOI: 10.62639/sspjiss01.20250203

1. Introduction

In this paper we consider finite undirected simple graphs and follow the notation and terminology of^[1].

Let *G* be a graph with vertex set V(G) and edge set E(G) The line graph L(G) of a graph *G* is the graph with vertex set E(G), in which two vertices are adjacent, if and only if the corresponding edges have a common end vertex in *G*. For $m \ge 1$, the *m*-time iterated line graph $L^m(G)$ is defined recursively by $L^0(G) = G$ $L^1(G) = L(G)$ and $L(L^m(G)) = L(L^{m-1}(G))$. A graph is *Hamilton-connected* if for any two vertices $u, v \in V(G)$ there exists a (u,v)-path containing all vertices of *G*. The *Hamilton-connected* index is the smallest integer *m* such that $L^m(G)$ is Hamilton-connected, denoted by hc(G). A path passing through all the vertices of a graph is called a *Hamilton path*. The path, cycle and complete graph with *n* vertices are denoted P_n , C_n and κ_n , respectively. Defined $V_i(G) = \{v \in V(G) : d_G(v) = i\}$. The diameter of *G* is $diam(G)=max_{v \in V(G)} | max\{d(v,w)/w \in V(G)\}\}$. we use $\kappa(G)$ and $\kappa^*(G)$ to denote the connectivity and the edge-connectivity of *G*. For an integer k > 0, a graph *G* is *essentially* k-edge -connected if *G* does not have an essential edge cut *X* with |X| < k. The Petersen Graph is the simple graph whose vertices are the 2-element subsets of a 5-element set and whose edges are the pairs of disjoint 2-element subsets.

A lane in *G* is a nontrivial whose ends are not in $V_2(G)$ and whose internal vertices, if any, have degree 2 in *G*. $dist(e_i,e_j)$ is the length of the shortest path from a certain end point of to certain end point of e_j . A *poly-vertex* is one having degree at least 3. A *poly-path* is a path joining two poly-vertices of *G*, whose internal vertices, if any, have degree 2. A *cyclic-poly-path* is a path such that the ends of it are poly vertices and all internal vertices are on a cycle and of degree 2. An *end-vertex* is a leaf or one vertex having degree 1. An end-path is one joining a poly-vertex with an end-vertex such that whose internal vertices, if any, have degree 2.

A subgraph H of a graph G is dominating, if G-V(H) is edgeless. Let $v_0, v_k \in V(G)$, a (v_0, v_k) -trail of G is a vertex-

About the Author

⁽Manuscript NO.: JISS-25-3-62003)

An, Ziyu (2000-), female, Han ethnicity, from Shandong. Master candidate at Qinghai Minzu University. Research direction: Operations Research and Cybernetics.

edge alternating sequence $v_0 e_1 v_1 e_2 \dots e_k v_k$, such that all the e_i are distinct and for each $i=1, 2, \dots, k$, e_i joins v_{i-1} with V_i . With the notation above, the (v_0, v_k) -trail is also called an (e_1, e_k) -trail, and the vertices v_1, v_2, \dots, v_{k-1} are called internal vertices of the trail. When $(v_0 = v_k)$ the (v_0, v_k) -trail is called a (v_0, v_k) closed trail. A *dominating* (e_i, e_k) - *trail T* of *G* is an (e_i, e_k) - trail such that every edge of *G* is incident with an internal vertex of *T*. A *spanning* (e_i, e_k) -*trail* of *G* is an (e_i, e_k) -trail such that V(T) = V(G) A dominating closed trail (abbreviated DCT) of *G* is a closed trail (or, equivalently, an eulerian subgraph) *T* in *G* such that every edge of *G* has at least one vertex on *T*. There is a close relationship between dominating closed trails in graph *G* and Hamilton cycles in L(G), as follows:

Theorem 1. ^[2] Let *G* be a graph with $|E(G)| \ge 3$. Then L(G) is hamiltonian if and only if *G* has a dominating closed trail.

In 1983, Clark and Wormald in ^[3] generalized the definition regarding Hamiltonian indices and introduced the notion of Hamilton-connected index. In 2009, Chen et.al. in ^[4] studied the Hamilton-connected index problem and obtained a necessary and sufficient condition, stated as follows:

Theorem 2. ^[4] Let *G* be a graph with $|E(G)| \ge 3$. Then L(G) is Hamilton-connected if and only if for any pair of edges $e_1, e_2 \in E(G), G$ has a dominating (e_1, e_2) -trail.

It is obviously that the following result:

Corollary 3. If G is Hamilton-connected, then L(G) is also Hamilton-connected.

In ^[4], Chen, et.al. established certain relationships between the Hamilton-connected index and both the minimum and maximum degrees of a graph. Additionally, they presented some relations between the Hamilton-connected index and the connectivity and diameter of *G*, and results as follows:

Theorem 4. ^[4] Let G be a connected graph with minimum degree at least 3. Then $hc(G) \le 3$.

Theorem 5. ^[4] Let G be a graph which is neither a path nor a cycle. Then $\kappa^3(G) \le hc(G) \le \kappa^3(G) + 2$, where $\kappa^3(G) = \min\{m \mid L^m(G) \text{ is } 3 - connected}\}$.

Theorem 6.^[4] Let *G* be a connected graph that is neither a path nor cycle. If the length of a longest lane is *k* with $k \ge diam(G)+1$, then hc(G)=k-1.

In 2014, Sabir Eminjan and Vumar Elkin in ^[5] introduced the relations between the Hamilton-connected index and the Hamiltonian index of trees. After that, they determined the upper and lower bounds of the Hamilton-connected index of unicyclic graphs. They also presented the trees and unicyclic graphs *G* with the property that hc(G)=h(G)+1, the results as follows:

Theorem 7. ^[5] If *T* is a tree with $|V(T)| \ge 5$ which is not a path, then $h(T) \le hc(T) \le h(T)+1$, where $h(T)=max\{\{I(P)+1\}, \{I(Q)\}\}$ over all poly-path *P* and end-paths *Q* of *T*, and *I*(.) is the length of a path.

Theorem 8. ^[5] Let *G* be a unicyclic graph with $|V(G)| \ge 4$ that is not a cycle. Then, $k \le hc(G) \le max\{k + 1, k + 1\}$, where $k = max\{\{l(P) + 1\}, \{l(Q)\}\}$ overall poly-paths *P* and end-paths *Q* of *G*, *l*(.) is length of a path, and *k* is the length of a longest cyclic-poly-path in *G*.

Theorem 9. ^[5] If *G* is a connected graph containing cyclic and acyclic blocks such that each cyclic block is hamiltonian, then $k \le hc$ (*G*) $\le max\{k+1, k+1\}$, where $k = max\{\{l(P)+1\}, \{l(Q)\}\}\)$ over all poly-paths *P* and end-paths *Q* of *G*, *l*(.) is length of a path, and *k*, is the length of a longest cyclic-poly-path in *G*.

As we well know, the determination of a Hamilton-connected graph is an NP-hard problem, there are few results regarding the Hamilton-connected index of graph, we looked up some results between Hamilton-connected graph and the line graph, as follows:

Theorem 10. ^[6] If *G* is a 4-edge-connected graph, then the line graph *L*(*G*) is Hamilton-connected.

Theorem 11.^[7] Every 7-connected line graph is Hamilton-connected.

Theorem 12.^[8] (I) Every 4-connected line graph of a claw free graph is Hamilton-connected.

(II) Every 4-connected hourglass free line graph is Hamilton-connected.

Theorem 13. ^[8] Let *G* be a graph such that L(G) is 4-connected and every vertex of degree 3 in a triangle of *G*, then L(G) is Hamilton-connected.

Theorem 14. ^[9] Every 3-connected, essentially 11-connected line graph is Hamilton- connected.

In 2023, Lv and Zhao in ^[10] provided some results on the Hamiltonian indices of three classes of graphs obtained from Petersen graph, one of results as follows:

Theorem 15 ^[10] (I) Let G be a Petersen graph, then h(G)=1.

(II) Let G be the graph obtained by replacing every vertex of Petersen graph with a n-cycle, then h(G)=2.

(III) Let G be the graph obtained by adding n pendant edges to each vertex of Petersen graph, then h(G)=2.

2. Our Main Results

Motivated by these studies, we consider the Hamilton-connected indices of the Petersen graph and the graphs obtained by replacing each vertices of the Petersen graph with an *n*-cycle, and obtain the following results:

Theorem 16. Let *G* be a Petersen graph, then *hc* (*G*)=1.

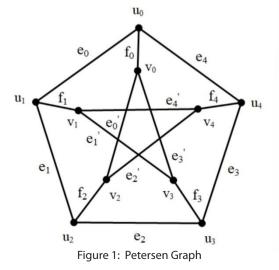
Theorem 17. Let *G* be the graph obtained by replacing every vertex of Petersen graph with a *n*-cycle ($3 \le n \le 6$), then *hc* (*G*)=2.

Theorem 18. Let *G* be the graph obtained by replacing every vertex of Petersen graph with a *n*-cycle($n \ge 7$), then *hc* (*G*) ≥ 2 .

3. Proof of Main Results

Proof of theorem 16 First of all, the Petersen graph *G* is a 3-connected graph. According to Theorem 5, we can obtain $0 \le hc$ (*G*) ≤ 2 . As we all know, the Petersen graph is not a Hamilton-connected graph, then hc (*G*) $\ne 0$, theorefore $1 \le hc$ (*G*) ≤ 2 . Next, we prove hc(G)=1by Theorem 2, we need to find a dominating (e_i, e_j) -trail for any pair of edges in the Petersen graph. Since the diameter of the Petersen graph is 2, we can be certain that the dominating (e_i, e_j) -trail has 3 cases in *G*, as follows:

For convenience, we mark the vertices and edges of Petersen graph as figure 1, Let u_n, v_n (n = 0,1,2,3,4) be respectively vertices of outer cycle C_s and inner cycle C_s , e_n, e_n, f_n (n = 0,1,2,3,4) be respectively edges of outer cycle C_s and inner cycle C_s and the edges connecting the outer cycle C_s and the inner cycle C_s .



Case 1. When dist $(e_i, e_j) = 0$, it means we have found two adjacent edges in the *G*, Since the Petersen graph is a Symmetric figure, some isomorphic structures will not be elaborated further in this part of the text.

Subcase 1.1 e_i and e_j are the edges of outer C_5 of the Petersen graph, there exist two situations where two sides with a distance of 0 which are adjacent to each other. There are 5 pairs of adjacent (e_i, e_j) edges, which can be separated into two types: (e_4, e_0) and $(e_n, e_{n+1})(n = 0, 1, 2, 3)$ For any (e_i, e_j) , we can find a dominating (e_i, e_j) trail in figure 1. Taking (e_0, e_1) for instance, we provide one of the edge-trail sequence as follows: $e_0u_0e_4u_4e_3u_3e_2u_2f_2v_2e_0v_0e_3v_3e_1v_1f_1u_1e_1$. Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 1.2 e_i and e_j are also two situations among the adjacent edges between the outer C_5 of the Petersen graph and the internal edges of the connected C_5 . There are 10 different adjacent (e_i, e_j) edge pairs, which can be separated into three types: (e_n, f_n) , $(e_n, f_{n+1})(n = 0, 1, 2, 3)$, and (e_4, f_0) For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (e_0, f_0) for instance, we provide one of the edge-trail sequences: $e_0u_1e_1u_2e_2u_3e_3u_4f_4v_4e_4v_1e_1v_3e_3v_0f_0$ Similarly, we C_5 can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 1.3 e_i is the edge connecting the outer and the inner C_5 , and e_j is the edge on the inner C_5 of the Petersen graph. There are 10 different adjacent (e_i, e_j) edge pairs, which can be separated into three types: (f_n, e_n) , $(f_n, e_{n+3})(n = 0, 1)$ and $(f_n, e_{n-2})(n = 2, 3, 4)$ For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (f_0, e_0) as an example, we provide one of the edge-trail sequence: $f_0u_0e_0u_1e_1u_2e_2u_3f_3v_3e_1v_1e_4v_4e_2v_2e_0$ Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 1.4 Both e_i and e_j are edges on the inner C_5 of the Petersen graph. There are 5 different adjacent (e_i, e_j) edge pairs, which can be separated into three types: $(e_n, e_{n+3})(n = 0, 1)$, $(e_n, e_{n+2})(n = 2, 3, 4)$. For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (e_0, e_3) as an example, we only provide one of the edge-trail sequences: $e_0' v_2 e_2' v_4 e_4' v_1 e_1' v_3 f_3 u_3 e_2 u_2 e_1 u_1 e_0 u_0 f_0 v_0 e_3'$. Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Case 2. dist $(e_i, e_j) = 1$ in the Petersen graph.

Subcase 2.1 e_i and e_j are non-adjacent edges on the outer C_5 of the Petersen graph with distance of 1. There are 5 different adjacent (e_i, e_j) edge pairs, which can be separated into two types: $(e_n, e_{n+2})(n = 0, 1, 2)$ and $(e_n, e_{n-3})(n = 3, 4)$. For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (e_0, e_2) as an example, we list the dominating edge trail sequence: $e_0u_if_iv_ie'_iv_je'_jv_$

Subcase 2.2 e_i is the edge on the outer C_s of the Petersen graph, and e_j is the edge on the inner C_s . Except for five edge pairs: $(e_n, e'_{n+2})(n = 0, 1, 2)$, $(e_n, e'_{n-3})(n = 3, 4)$, there are 20 different (e_i, e_j) edge pairs with distance of 1. For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (e_0, e'_4) as an example, we list the dominating edge trail sequence: $e_0u_1e_1u_2f_2v_2e_2v_0e_3v_3f_3u_3e_3u_4f_4v_4e_4^{-1}$. Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 2.3 e_i is the edge on the outer C_5 of the Petersen graph, and e_j is the edge connecting the outer C_5 and the inner C_5 . There are 10 different (e_i, e_j) edge pairs with distance of 1, which can be separated into four types: $(e_n, f_{n-1})(n = 1, 2, 3, 4), (e_n, f_{n+2})(n = 0, 1, 2), (e_n, f_{n-3})(n = 3, 4)$, and (e_0, f_4) . For any (e_i, e_j) we can find a dominating (e_i, e_j) -trail in figure 1. Taking (e_0, f_2) as an example, we list the dominating edge trail sequence: $e_0u_0f_0v_0e_jv_3e_iv_1e_4v_4f_4u_4e_3u_3e_2u_2f_2$. Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 2.4 Both e_i and e_j are edges connecting the outer C_5 and the inner C_5 in the Petersen graph. There are 5 different (e_i, e_j) edge pairs with distance of 1, which can be separated into four types: $(f_n, f_{n+2})(n = 0, 1, 2)$, $(f_n, f_{n-3})(n = 3, 4)$, $(f_n, f_{n+1})(n = 0, 1, 2, 3)$, (f_0, f_4) . For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (f_0, f_4) as an example, we list the dominating edge trail sequence: $f_0u_0e_0u_1e_1u_2e_2u_3f_3v_3e_3v_0e_0v_2e_2v_4f_4$. Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 2.5 e_i is the edge connecting the outer C_5 and the inner C_5 in the Petersen graph, and e_j is the edge on the inner C_5 . There are 10 different (e_i, e_j) edge pairs with distance of 1, which can be separated into four types: $(f_n, e_{n+2})(n = 0, 1, 2)$, $(f_n, e_{n+1})(n = 0, 1, 2, 3)$, $(f_n, e_{n-3})(n = 3, 4)$, and (f_4, e_0) . For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (f_0, e_2) as an example, we list the dominating edge trail sequences for the remaining edge pairs.

Subcase 2.6 Both e_i and e_j are edges on the inner C_s of the Petersen graph. There are 5 different (e_i, e_j) edge pairs with distance of 1, which can be separated into two types: $(e_n, e_{n+1})(n = 0, 1, 2, 3)$, and (e_0, e_4) . For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (e_0, e_4) as an example, we list the dominating edge trail sequence: $e_0'v_2 f_2 u_2 e_1 u_1 e_0 u_0 e_4 u_4 e_3 u_3 f_3 v_3 e_1' v_1 e_4'$. Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Case 3. $dist(e_i, e_j) = 2$ in G, Since the diam(G) = 2 of the Petersen graph, so we can only provide 2 different cases in this condition.

Subcase 3.1 e_i is the edge on the outer C_s of the Petersen graph, and e_j is the edge on the inner C_s . There are only 5 different (e_i, e_j) edge pairs with distance of 2, which can be separated into two types: $(e_n, e_{n+2})(n = 0, 1, 2)$ and $(e_n, e_{n-3})(n = 3, 4)$. For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (e_0, e_2) as an example, the dominating edge trail sequence is: $e_0u_0f_0v_0e_3v_3f_3u_3e_2u_2e_1u_1f_1v_1e_4v_4e_2$. Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

Subcase 3.2 e_i is the edge on the outer C_s of the Petersen graph, and e_j is the edge connecting the outer C_s and the inner C_s . There are only 5 different (e_i, e_j) edge pairs with distance of 2, which can be separated into two types: $(e_n, f_{n+3})(n = 0, 1)$ and $(e_n, f_{n-2})(n = 2, 3, 4)$. For any (e_i, e_j) , we can find a dominating (e_i, e_j) -trail in figure 1. Taking (e_0, f_3) as an example, the dominating edge trail sequence is: $e_0u_0f_0e_0v_2f_2u_2e_1u_1f_1v_1e_4v_4f_4u_4e_3u_3f_3$. Similarly, we can determine such dominating edge trail sequences for the remaining edge pairs.

According to theorem 2, we can sure that L(G) of Petersen graph is Hamilton-connected, that is hc(G)=1.

Lemma 19^[1] Whitney Theorem: There exists a relationship between $\kappa(G)$ and $\kappa(L(G) \text{ of } G; \kappa(L(G) \ge 2\kappa(G)-2)$.

Since multiedges are not permitted to appear in this passage, we didn't consider the graph obtained by replacing every vertex of Petersen graph with a 2-cycle. Since C_5 contains C_3 , and C_3 is also K_3 , the graphs obtained by replacing each vertices of the Petersen graph with *n*-cycle ($3 \le n \le 6$) can be discussed in two cases:

Proof of Theorem 17. Let *G* be the graph which is obtained by replacing each vertex of the Petersen graph with a 3-cycle. It can be known that $\kappa(G) = 3$. According to theorem 5, let $\kappa^3(G) = \min\{m \mid L^m(G) \text{ is } 3 - connected}\}$ for this newly constructed graph. When m=0, we have $\kappa^3(G) = m = 0$, which satisfied the conditions of this theorem. Consequently, we can obtain that $0 \le hc(G) \le 2$ for graph *G*. Then, by Theorem 15(II), the Hamiltonian indices h(G)=2. Combining this with the previous result, we can further get $2 \le hc(G) \le 2$, that is, hc(G)=2(see figure 2).

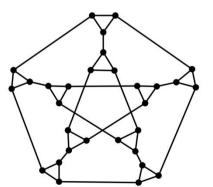


Figure 2: the graph obtained by replacing every vertex with a 3-cycle of Petersen graph

Case 2 Let *G* be the graph which is obtained by replacing each vertex of the Petersen graph with a *n*-cycle ($4 \le n \le 6$), it is obviously that $\kappa(G) = 2$. We can observe that $\kappa(L(G) = 3$. According to theorem 5, we have $\kappa^3(G) = 1$, then $1 \le hc(G) \le 3$. The Hamiltonian indices h(G) = 2 by theorem 15(II). Therefore, we can further conclude that $2 \le hc(G) \le 3$. Let G = L(G), since any three edges incident to a degree-3 vertex in *G* form a claw structure $K_{1,3}$, thus every degree-3 vertex in *G* lies on a triangle, and $\kappa(G) = 3$. According to Lemma 19, $\kappa(L(G')) \ge 2\kappa(G') - 2$, i.e., $\kappa(L(G')) \ge 4$. By theorem 13, $L^2(G) = L(G')$ is Hamilton-connected. Hence, hc(G) = 2.

Proof of Theorem 18. Let G be the graph which is obtained by replacing each vertex of the Petersen graph with an *n*-cycle ($n \ge 7$), by theorem 15(II), the Hamiltonian indices h(G) = 2 for this graph. Therefore, we can further conclude that $hc(G) \ge 2$.

4. Concluding Remarks

Determining the Hamilton-connected index hc(G) of a graph is *NP*-hard, there are few results on it. In this paper, we determine that the Hamilton-connected indices of the Petersen graph is 1, and the Hamilton-connected indices of graphs obtained by replacing each vertex of the Petersen graph with an *n*-cycle ($3 \le n \le 6$) is 2. When $n \ge 7$, there is no effective method to determine the Hamilton-connected index, and thus this problem remains a topic for future research.

Acknowledgement. This work was supported by 2023 school level project of Qinghai Minzu University (No.07M2023005).

References

- [1] Bondy, J.A.; Murty U.S.R. Graph theory with applications. Macmillan, London and Elsevier, New York, 1976.
- [2] Harary, F.; Nash-Williams, C.St.J.A. On eulerian and hamiltonian graphs and line graphs. Canad. Math. Bull 1965, 8, 701-709.
- [3] Chark, L.H.; Wormald, N.C. Hamiltonian-like indices of graphs. ARS Combinatoria 1983, 15, 131-148.
- [4] Chen, Z.H.; Lai, H.J.; Xiong, L.M.; Yan, H.Y.; Zhan, M.Q. Hamilton-connected indices of graphs. Discrete Math 2009, 309, 4819-4827.
- [5] Sabir E, Vumar E. Spanning connectivity of the power of a graph and Hamilton- connected index of a graph. Graphs and Combinatorics, 2014,30,1551-1563.
- [6] Zhan S M. Hamiltonian connectedness of line graphs. Ars Combinatoria, 1986,22: 89-95.
- [7] S.Zhan, On Hamiltonian line graphs and connectivity. Discrete Math, 1991,158,89-95.
- [8] Kriesell M. All 4-connected line graphs of claw free graphs are Hamiltonian con- nected. Journal of Combinatorial Theory, Series B, 2001, 82(2): 306-315.
- [9] Yang W, Lai H, Li H, et al. Collapsible graphs and Hamiltonian connectedness of line graphs. Discrete Applied Mathematics, 2012, 160(12): 1837-1844.
- [10] Lv S, Zhao L. Hamiltonian Indices of Three Classes of Graphs Obtained from Petersen Graph. Axioms, 2023, 12(6).